

Internet in Space with UoSAT-12

Operating Missions as Nodes on the Internet (OMNI)

http://ipinspace.gsfc.nasa.gov/

James Rash NASA/GSFC

November 13, 2000

Summary

- Overall Concept of Internet in Space
- Experiment Team
- Purpose of Experiments
- UoSAT-12 Satellite
- Experiment Setup
- Experiment results
 - Ping Experiment
 - Clock Synch Experiment
 - File Transfer Experiment
 - Performance Experiment
- Conclusions
- Future

Space Internet Communication Concept

UoSAT-12 Flight Experiment Team

- NASA/GSFC
 - James Rash
- Computer Sciences Corp
 - Keith Hogie, Ron Parise, Ed Criscuolo, Jim Langston
- Surrey Satellite Technology Ltd. (SSTL)
 - Chris Jackson
- VyTek Wireless
 - Harold Price

Purpose of UoSAT-12 Experiments

- Address the question:
 - Which standard RFC-compliant Internet protocols can support LEO space mission communications?
- Obtain performance data

UoSAT-12 Satellite

- UoSAT Microsatellite -- available on the RSDO catalog
- UoSAT-12 launched Spring 1999
- Owner Surrey Satellite Technology Ltd. (SSTL) (Surrey, England)
- LEO
- Experimental satellite
 - Two imaging systems
 - Auxiliary processor
- UHF and S-band
- Single ground station (Surrey)
- UoSAT-12 not designed for IP communications

UoSAT-12 Flight Software Modifications

- UoSAT-12 Flight Software (VyTek Wireless)
 - SpaceCraft Operating System (SCOS) developed by VyTek
 - FreeBSD 4.4 IP stack integrated with SCOS and HDLC driver
 - Basic stack supports IP, ICMP, UDP, TCP
 - PING supported via ICMP/IP
 - Network Time Protocol (NTP) client ported to SCOS
 - NTP/UDP/IP
 - File Transfer Protocol (FTP) server ported to SCOS
 - FTP/TCP/IP
- Cisco router tested with SCOS simulator system in Pittsburgh

Surrey Ground Station Modifications

- Surrey Ground Station (SSTL)
 - Installed Cisco-provided router with RS-530 interface at SSTL
 - Interfaced router to clock/data from SSTL transceiver
 - Verified router receiving HDLC frames

Uploaded new SCOS modules to secondary CPU onboard

Network Connectivity Configuration

- Continual PING from router to UoSAT-12
- GSFC to Surrey router PINGs (10 sec.)
- GSFC to UoSAT-12 PINGs (10 sec.)
- Router monitoring from GSFC

UoSAT-12 Pass Characteristics

Propagation delays are a function of data rate and distance

Pkt. Size / Rate	9.6	38.4
64 byte (ms.)	53	13
1280 byte (ms.)	1,067	267

Data Path / Elevation	00	10°	45°	90°
One-way delay (ms.)	10	7	3	2
64B packet round-trip (ms.)	86	80	72	70
1280B packet round-trip (ms.)	1,354	1,348	1,340	1,338

PING Test 2 - 16:43 - Apr. 10, 2000

Clock Sync Configuration

NTP Test 1 - 09:38 - Apr. 14, 2000

NTP Test 2 - 16:25 - Apr. 14, 2000

FTP Configuration

- FTP server on UoSAT-12
- Packet trace on ground & onboard

FTP Test 3 - June 7, 2000

FTP direct from GSFC to UoSAT-12

Downloaded 4-Image Mosaic of Perth, Australia

FTP Performance Tuning

- Analyzed initial FTP traces to identify reason for transmission pauses of 40-60 seconds
- Main performance limitation traced to combination of:
 - 512 byte MTU
 - 2048 byte window
 - 64 second max for retransmit timer
- Adjusted max retransmit time to 3 seconds and repeated FTPs
- Successful data file and image transfers up and down
 - FTP theoretical application bandwidth is 91.6% of link
 - (512 bytes of data with approximately 50 bytes of HDLC/IP/TCP headers)
 - Uplink: 16.4 KBytes, 8.66 Kbits/sec (with 0 retr.), 90.2% util.
 - Downlink: 227 KBytes, 30.4 Kbits/sec (with 9 retr), 79.2% util.

UoSAT-12 Experiment Conclusions

- Standard RFC-compliant protocols and hardware upgrade for this LEO mission at existing ground station provided:
 - Network connectivity and interoperability
 - Onboard clock synchronization within onboard clock and processor time-slice limitations
 - Reliable file transfers
 - A mechanism for reliable delivery of commands to onboard subsystems
- Existence proof: Some spacecraft can achieve Internet connectivity with minimal hardware (upgrade) at ground stations
- Tuning of TCP stack parameters can raise performance in TCP-based data transfers for LEO spacecraft

Future OMNI/UoSAT-12 IP Experiments

- Real-time data delivery (UDP)
- Reliable commanding (TCP) and blind commanding (UDP)
- Multicast real-time data delivery (UDP/IP multicast)
- UDP-based, asymmetric bandwidth, "reliable" file transfer (MFTP, CFDP, PBP, etc.)
- Automatic routing at multiple ground stations (Mobile IP)
- Automated file store and forward (SMTP)
- Network security (VPN at ground sites and spacecraft)

OMNI - http://ipinspace.gsfc.nasa.gov/

FTP Test 7 - July 5, 2000

FTP Test 7 - July 5, 2000

FTP Rapid Retransmit

FTP: Retransmit Timeout

